online kép - Fájl  tubefájl feltöltés file feltöltés - adja hozzá a fájlokat onlinefedezze fel a legújabb online dokumentumokKapcsolat
  
 

Letöltheto dokumentumok, programok, törvények, tervezetek, javaslatok, egyéb hasznos információk, receptek - Fájl kiterjesztések - fajltube.com

Online dokumentumok - kep
  
felso sarok kategória jobb felso sarok
 

Biológia állatok Fizikai Földrajz Kémia Matematika Növénytan Számítógépes
Filozófia
Gazdaság
Gyógyszer
Irodalom
Menedzsment
Receptek
Vegyes

 
bal also sarok   jobb also sarok
felso sarok   jobb felso sarok
 




































 
bal also sarok   jobb also sarok

Memória technológiak*

számítógépes





felso sarok

egyéb tételek

jobb felso sarok
 
RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY
Web mail és e-mail IP alapon
Part Design CATIA V5 - Start
Windows 7 telepítése USB tarolóról
Alkalmazasok
Matav rendszertechnika
A .NET
Kapcsolat az ügyfél szolgalattal
Memória technológiak*
 
bal also sarok   jobb also sarok

Memória technológiák



A memória nélkülözhetetlen komponens bármilyen számítógéprendszerben. Feladata a programok és a hozzájuk tartozó adatok tárolása.

A memóriatechnológiák a következőképpen osztályozhatók:

Read Write Memory (RWM) - olvasható, írható memória

Random Access Memory (RAM) - a hozzáférési idő nem függ az adatok memóriában való elhelyezésétől.

Static RAM (SRAM) - gyors, viszonylag kis kapacitású memória típus.

Dynamic RAM (DRAM) - lassúbb, nagy kapacitású memória típus.

Non - RAM: Serial Access Memory - FIFO, LIFO; - változó hozzáférési idő.



Content Access Memory (CAM) - tartalomfüggő kiválasztó rendszerű memória.

Non - volatile Read Write Memory (NVRWM): EPROM, EEPROM, FLASH - nem illékony, olvasható, írható memória típusok; a beírási idő jóval nagyobb, mint az olvasásé.

Read Only Memory (ROM) - gyártási maszk által programozott, csak olvasható memória.

Programmable ROM (PROM) - felhasználó által csak egyszer beírható, többször olvasható memória.

Static vs. dynamic - a sztatikus memória megőrzi a tartalmát, amíg tápláló feszültséget kap; a dinamikus memória tartalmát időnként fel kell frissíteni.

Synchronous vs. asynchronous - a szinkron memóriák egy órajel élen veszik át vagy adják ki az adatokat; az aszinkron memóriák felismerhetik a címváltozást, és ennek alapján indíthatnak be ciklusokat.


Forrás: James F. Plusquellic https://www.cs.umbc.edu/~plusquel/vlsi/slides/chap8_2.html

Memória architektúra

Egy tipikus memória áramkör belső felépítése a következő:

Row decoder - Sorkiválasztó áramkör.
- Column decoder - Oszlopkiválasztó áramkör.
- Sense amplifier - Olvasó erősítő.
- Write buffer - Beíró erősítő.
- Column multiplexer - A kiválasztott oszlopot a ki/bemenethez kapcsoló áramkör.


A fentebb ábrázolt egy modulos modell kis kapacitású memóriák esetében (256kbit) használható.

Nagy kapacitású memóriák több modulos (P block) architektúrát használnak.



Az ábra szerint egy 4Mbites memória címszerkezete a következő:

Block-5bit, Sor-10bit, Oszlop-7bit, összesen 22bit.


ROM memória

A ROM cellák tartalma változhatatlan. Több fizikai megoldás használható.

A következő ábrán dióda, réteg és MOS tranzisztor alapú cellák láthatók, logikai 1-es és 0 állapotban.

A dióda és a réteg tranzisztor pozitív jelet továbbít a kimenő bitvonalra (BL), ha a megfelelő kiválasztó szóvonal (WL) aktív. A diódás megoldás a WL feszültségét adja át a kimenetre, a tranzisztor pedig a kollektor tápfeszültségét, a megfelelő feszültségesések figyelembevételével és/vagy kimenő erősítőkön keresztül.


A MOS tranzisztoros változat esetében minden BL-t egy-egy pMOS tart 1-es szinten. Ha 0-t kell generálni, egy, a megfelelő bit helyzetre beépített nMOS lehúzza a pMOS által tartott BL-t, alacsony feszültségre. Hogy a pMOS, nMOS feszültségosztó jól működjön, az nMOS ellenállása legalább négyszer kisebb kell legyen mint a pMOS-é.


Nem illó olvasható, írható memóriák

A memória felépítése hasonlít a ROM memória szerkezetéhez. A tranzisztorok szelektív be/kikapcsolása a küszöbfeszültség módosításával történik. A küszöbfeszültséget egy lebegő elektróda feltöltésével/kisütésével változtatják.

Beíró (magas, 15-20V) feszültség alkalmazása a source (forrás) és drain (csapolás) között erős elektromos mezőt hoz létre és lavina -(forró elektron)- belövést okoz a lebegő elektródába, a normális feszültséggel táplált kiválasztó elektróda alatt.

A forró (nagy sebességű) elektronok áthatolnak az első oxidrétegen, és negatív töltést tárolnak a lebegő elektródán, megnövelve a küszöbfeszültséget kb. 7V-ra.



A kitörlési metódus határozza meg a különböző újraprogramozható nem illékony memóriák típusát.


EPROM: Erasable Programmable ROM - Törölhető, programozható ROM



ultraibolya (UV) fény hatására a lebegő elektródon tárolt elektronok egy része eltávozik, csökken a küszöbfeszültség, ez a törölt állapot. Az összes memória cellát egyszerre törlik, egy átlátszó ablakon keresztül.

A törlés lassú, percek alatt megy végbe.

A programozás is lassú, 5-10 mikroszekundum szavanként.

A programozási ciklusok száma véges, kb. 100-1000.

Jó helykihasználás, egy tranzisztor cellánként.


EEPROM- Electrical Erasable PROM ‑ Elektromosan törölhető PROM

Nagyon vékony oxid rétegen keresztül, a Fowler-Nordheim alagúthatás alapján töltődik fel beíráskor és sül ki törléskor a lebegő elektród.

Törléskor a beíráshoz képest fordított feszültséget alkalmaznak.

Érzékeny a küszöbfeszültség értékére, különálló kiválasztó tranzisztort kapcsolnak minden tároló tranzisztorhoz.



Flash EEPROM


A Flash technológia az EPROM és EEPROM kombinációja. Programozáskor forró-elektron-injektálást, törléskor Fowler-Nordheim alagúthatást használnak.

Törléskor a hardver ellenőrzi a küszöbfeszültség értékét, biztosítva, hogy a kitörölt tranzisztor működőképes marad.

Programozáskor a source (forrás) földpotenciálon, a gate (kapú) és a drain (csapolás) 12V-feszültségen van.



Törléskor a kapu földpotenciálon, a forrás 12V-on van, a csapolás táplálása meg van szakítva.

SRAM Sztatikus RAM

A sztatikus RAM hat tranzisztort tartalmaz. A cella alapja egy 4 tranzisztorból álló billenő áramkör. A szókiválasztó vonal által vezérelt 2 tranzisztor kapcsolja a cellát a bitvonalakhoz. Olvasáskor a cella tartalma határozza meg a bitvonalak potenciálját. Beíráskor a bitvonalak határozzák meg a cella állapotát.




Olvasó műveletnél a bit és ­/bit vonalakat előtöltik 5V-ra, mielőtt aktiválnák a szókiválasztó vonalat.       

Előtöltés után a címzett cella vezető nMOS tranzisztora lehúzza "0" szintre a megfelelő bit vagy /bit vonalat, meghatározva ezáltal a kiolvasott jel értékét. Az előtöltést azért alkalmazzák, hogy az olvasás pillanatában a kiválasztott cella képes legyen beállítani a bitvonalak logikai szintjét, és külső tápfeszültségek ne befolyásolják a cella tartalmát a két kiválasztó tranzisztoron keresztül.

Az előtöltést meg kell szakítani a kiválasztó vonalak aktiválása előtt. Ellenkező esetben a kiválasztott cellák parazitán billenhetnek az "1"-es szintre beállított bitvonalak hatására.

SRAM: Read Operation - Olvasási művelet

A beírás pillanatában a bitvonalakat megfelelően méretezett tranzisztorok révén hajtják meg, amelyek a beírandó adatbit szerint vezérlik a cella tranzisztorait a kiválasztó tranzisztorokon keresztül.

A beírási ábrán az N5, N6-os tranzisztorok a tápforráshoz kötött ellenállások szerepét töltik be.

N1, N2 a beíró, N3, N4 a kiválasztó tranzisztorok.

Az ábra egy "0" tartalmú cella "1"-be való átírását illusztrálja.


SRAM: Write Operation ‑ Beírási művelet.



Register files ‑ Regiszter blokk

A következő ábra egy-író, két-olvasó hozzáférésű regiszterblokkot mutat be.



A tranzisztorok melletti számok a tranzisztorok geometriáját és ezáltal a belső ellenállásukat jellemzik. Minél nagyobb a tört szám értéke, annál kisebb a tranzisztor ellenállása, nagyobb teljesítményt tud vezérelni, és meghatározza az áramkör magatartását.

A regiszter alapcellája egy 4 tranzisztoros billenő áramkör. A cella egy fordító áramkörön keresztül kapcsolódik az olvasó vonalakhoz. Teljesítménynövelés mellett a fordító áramkör a cella szigetelését is biztosítja, az olvasó bitvonalakon keresztül nem lehet parazitán beírni a cellába.

Register file: két olvasás, egy írás hozzáféréssel.


DRAM : Dynamic Random Access Memory - Dinamikus RAM

A DRAM cella általában egy félvezető kondenzátoron tárolja az információt.

Mivelhogy, akármilyen jó is a szigetelés, egy bizonyos idő múlva a kondenzátor kisül, a cellát periodikusan újra kell tölteni (írni), ezért nevezik dinamikusnak a cella működését. Az újratöltés ugyanazzal az információval történik, amely be volt írva a cellába, ezért ezt a műveletet frissítésnek ("refresh") nevezik. A frissítés tehát egy olvasás, amelyet a kiolvasott érték automatikus visszaírása követ. Mivel minden cellát fel kell frissíteni msec nagyságrendű periódussal, ez bizonyos időveszteséget okoz a memória működésében.


3T DRAM

Háromtranzisztoros dinamikus memória cella.

A frissítést meg lehet valósítani a bit2 vonal olvasásával, és a fordított érték visszaírásával a bit1 vonalon keresztül.

A bit2-es vonalat előtöltik olvasáskor, hogy ne legyen állandó nyugalmi áram.

Ezt a memória felépítést néha ASIC áramkörökben használják, mivel egyszerű a tervezése és a működése is.

A tároló kondenzátor szerepét az X-el jelölt vezérlő kapu elektród parazita kapacitása tölti be. A baloldali beíró tranzisztor, amikor ki van választva, feltölti vagy kisüti az X kondenzátort, a bit1 vonal által meghatározott értékre. Olvasás előtt feltöltik a bit2 vonalat a tápfeszültség értékére. A kiválasztott cella határozza meg olvasáskor a bit2 vonal potenciálját. Ha az X kondenzátor fel volt töltve, az olvasó tranzisztor kisüti a bit2 vonalat a kiválasztó tranzisztoron keresztül. Ha nem volt feltöltve, a zárt olvasó tranzisztor nem süti ki a bit2 vonalat. A cella inversor (fordító), ha magas szintű feszültséggel írtak be a bit1 vonalon, olvasáskor alacsony feszültség jelenik meg a bit2-őn, és fordítva.



1T DRAM

Egy tranzisztoros dinamikus memória cella.


Ez a leggyakrabban használt memória cella. Cx egy különleges felépítésű kondenzátor, a cella tároló eleme. Cx értéke kb. 30 fF. Beíráskor a szókiválasztó vonal kinyitja a kiválasztó tranzisztort és a bit vonal által meghatározott értékre töltődik fel vagy sül ki a cella tároló kondenzátora.

Olvasáskor töltés átrendezés történik a Cx és a Cbit között. Cbit a beíró/kiolvasó vonal parazita kapacitása. Cx tipikusan 1 vagy 2 nagyságrenddel kisebb mint Cbit, így a potenciálkülönbség (delta-V) értéke kb. 250 mV.

Hogy az 1T cella működőképes legyen, az olvasáskor megjelenő delta-V-t fel kell erősíteni egy olvasó erősítővel (sense amplifier). Az egy bit vonalra kapcsolt cellák egy közös olvasó erősítőt használnak. A kiolvasó művelet a töltésátrendezéssel befolyásolja a cella tartalmát. Ezért minden olvasást ugyanabban a memóriaciklusban visszaírás követ. A visszaírás az olvasó erősítőben tárolt kiolvasott értékkel történik.

Az olvasó erősítő jelét az alábbi ábra illusztrálja.



Content Access Memory (CAM) ‑ Tartalom-hozzáférésű memória

A CAM egy 6 tranzisztoros SRAM memória cellára épül.

Egyszerre összehasonlít egy bemenő adat-szót az összes tárolt adat-szóval.

Például címátalakító memóriák építésénél használják.

Beíráskor a szóvonallal kiválasztott cellákba a bit vonalakon keresztül tárolják a megfelelő adatokat.

Olvasáskor a szókiválasztó vonalakat nem használják. A bit vonalakra ráviszik a keresett adatot és a cell, /cell tranzisztorok összehasonlítják a cella tartalmát a bit vonalakkal. Egyenlőség esetén a match (egyenlő) vonal magas logikai szintre áll be.


Tartalom hozzáférésű memória.



: 2450







Felhasználási feltételek